
An integrated approach to developing sensor network solutions ∗

Adam Dunkels Laura Marie Feeney Björn Grönvall
Thiemo Voigt

Computer and Network Architecture Laboratory
Swedish Institute of Computer Science

Box 1263, SE 164 29 Kista, Sweden
{adam,lmfeeney,bg,thiemo}@sics.se

Abstract

This paper describes a prototype sensor network-
ing platform and its associated development environ-
ment. Key elements of the system are the ESB sen-
sor hardware, the Contiki operating system, and the
communication stack, which includes a MAC layer
and a highly optimized TCP/IP. Because the work
is driven by prototype applications being developed
by project partners, particular attention is paid to
the development environment and to practical de-
ployment issues. Three prototype applications are
also presented.

1 Introduction

In this paper, we describe the ongoing development of
sensor network solutions at the Computer and Net-
work Architecture Laboratory of the Swedish Insti-
tute of Computer Science. Because the work is driven
by application experiments that are being developed
by project partners, it is necessary to take an inte-
grated approach to the development of a fully func-
tional system. Another result of this approach is that
development environment and deployment issues be-
come a “first-class” component of our work. Because
of the variety of available sensor devices, portability
is also a key concern.

In the following sections, we present four main el-
ements of our solution and describe current appli-
cations. The core of the system is the ESB sensor
hardware running the Contiki operating system. A
Contiki emulation/simulation environment has also
been developed to aid in the development process.

The communication stack includes an adaptive, en-
ergy efficient MAC protocol and a TCP/IP layer that
has been optimized for resource constrained devices.

∗This work was partly financed by VINNOVA, The Swedish
Agency for Innovation Systems.

Providing support for TCP/IP allows the sensor net-
work to be connected to the Internet infrastructure
and enables key management functionality such as
debugging and upgrading sensor applications.

Although some elements, in particular the MAC
layer and some TCP enhancements, are still being
explored in simulation, the current prototype is suf-
ficiently functional to support simple experimental
deployments. Three such experiments are outlined in
the final section: a building security monitoring; ma-
rine environmental measurements; and energy con-
servation in a residential complex.

2 Hardware platform

We use the ESB sensor board [4], developed by the
Freie Universität Berlin as a hardware platform for
prototyping and development (Figure 1). The ESB
board consists of a Texas Instruments MSP430 low-
power micro-controller, an RF Monolithics TR1001
single-chip RF transceiver, and a collection of sen-
sors. The MSP430 has 60 kilobytes of flash ROM
and 2 kilobytes of RAM. A 32 kilobyte serial EEP-
ROM provides additional persistent secondary stor-
age. The RF transceiver operates at 868 MHz and
supports transmission rates up to 115.2 kbps. The
board is equipped with two external connectors: an
RS-232 port and a JTAG interface. The RS-232 port
enables communication with external devices such as

Figure 1: Hardware platform: ESB from FU Berlin



a PC, while the JTAG interface can be used for code
downloading and debugging. The on-board sensors
are:

• A light sensor for the detection of visible light.

• A passive infrared sensor for detection of move-
ment.

• A temperature sensor.

• A vibration sensor for detection of movement of
the sensor board.

• A microphone for determination of the ambient
noise level.

• An infra-red sender and receiver.

The MSP430 micro-controller is designed specifi-
cally for low-power applications and provides a set of
low-power sleep modes. The micro-controller is awak-
ened from the sleep mode by an interrupt, generated
either by one of the internal timers, or by an external
device such as one of the sensors.

To enable run-time reprogramming, the MSP430
supports selective rewriting of the internal flash
ROM. This feature, combined with mechanisms in
our Contiki operating system, drastically shortens the
development cycle.

The TR1001 RF transceiver implements baseband
transmission with either amplitude shift keying or
on-off keying. The transceiver module provides half-
duplex bit level access to the physical radio medium.
All higher level mechanisms, such as MAC proto-
col processing, data encoding, and time multiplex-
ing, must be done in software. However, because
the transceiver is connected to one of the MSP430
UARTs, bit-shifting is done by the hardware rather
than in software. This reduces the load on the micro-
controller, as the UART causes an interrupt only after
a full 8-bit byte has been received. Other sensor node
designs, such as the Berkeley MICA motes [1], do not
have their RF transceiver connected to a UART, and
therefore an interrupt in generated for each incoming
bit.

3 The Contiki Operating Sys-
tem

Operating systems for small embedded devices are
commonly designed to offer high predictability and
therefore require that resources and processes are pre-
determined and pre-allocated at compile time. In
such systems, the operating system and all appli-
cations running on top of the system are statically

linked into a monolithic binary that is downloaded
into the embedded device. This approach works well
for traditional embedded systems, but does not pro-
vide the flexibility needed for distributed sensor net-
works. Fixed, pre-determined resource allocation and
static linking make it hard to dynamically update
sensor node software, both during development and
in deployed systems.

In contrast, the Contiki [2] operating system is de-
signed with flexibility in mind and allows individual
programs and services to be dynamically loaded and
unloaded in a running system.

Like other operating systems for sensor devices,
such as TinyOS [9], Contiki is based on an event-
based concurrency model. Unlike other systems,
however, Contiki also provides preemptive multi-
threading for applications that specifically require it.

Event-based systems have the advantage of lower
resource requirements than thread-based systems.
Also, they are well suited to sensor networks due to
the event-driven nature of the networks themselves.
There are, however, applications that do not work
well in event-based systems. One class of such appli-
cations are those that involve cryptographic compu-
tations. On the slow microprocessors used in sensor
networks, such computations may take many seconds
to complete. In a purely event-based system, the sys-
tem is not able to respond to external events during
the computation. In Contiki, the computation can
be performed in a separate thread, allowing events to
be handled while the computation runs in the back-
ground.

Service processVersion number

Function 1 ptr

Function 2 ptr

Function 3 ptr

Service
interface
stub

Function 2 implementation

Function 1 implementation

Service layer

Kernel

Function 3 implementation

Function 1();

Function 2();

Function 3();

Service interface

Application process

Figure 2: Dynamic linking of a service

When developing applications for sensor networks,
the ability to reprogram the sensors without requiring
physical access to the nodes greatly simplifies devel-
opment and reduces the development time. Contiki
has support for loading individual programs from the
network, which makes it possible to dynamically re-
program the behavior of the network. A thin service
layer, conceptually situated next to the kernel (Fig-



ure 2), provides service discovery and run-time dy-
namic service replacement within each sensor node.

Contiki is designed to be portable across a wide
range of different platforms. We have ported Contiki
to several platforms, including the Atmel AVR and
the Intel x86. Contiki was ported to the Z80 platform
in less than a day, by a third-party developer.

Figure 3: Screenshot of the Contiki simulator

The inherent portability of Contiki also makes it
trivial to run Contiki as a user-level process under a
PC operating system such as FreeBSD. We have im-
plemented a Contiki simulation environment in which
each sensor node is represented by its own FreeBSD
process and connected by network layer simulation.
Because the simulator runs the same Contiki code as
the ESB hardware, application programs developed
in the simulator can be directly compiled and run on
the sensor hardware. A screenshot of the simulator
is shown in Figure 3.

4 MAC layer

Because it operates between the network layer and
the wireless transceiver and among nodes sharing a
wireless channel, the MAC layer plays a key role in
two important areas: energy efficiency and quality
of service. We are developing a lightweight MAC [8]
in which an energy efficient TDMA-like structure is
overlaid on a CSMA-based collision avoidance proto-
col. Distributed adaptation to traffic and interference
can provide support for simple non-signalled quality
of service.

This approach has several features that make it
highly appropriate for sensor networks. Most im-
portantly, the proposed MAC is asynchronous[7][11].
Avoiding synchronization overhead is particularly im-
portant for resource limited sensor nodes, which must
also meet strict requirements on size, complexity and
cost. Moreover, sensor networks are often intended
for deployment in extreme or highly variable environ-
ments, which can negatively affect hardware stability.

The proposed MAC is also lightweight. In the ab-
sence of higher layer traffic, the MAC generates no
traffic overhead – an advantage that is enabled by
forgoing synchronization. This property is particu-
larly important for sensor networks that are intended
to monitor an environment over an extended period.

Because the proposed MAC uses adaptive mecha-
nisms to minimize contention and interference, it is
able to provide good best-effort QoS, as well as simple
non-signalled (better than best-effort) QoS. Because
no centralized coordination is used, it is also scalable
for multihop sensor networks.

The simple underlying mechanism is extensible and
additional mechanisms can be overlaid on it. In fu-
ture work, it should be possible to support more com-
plex signalled QoS schemes, on-demand synchroniza-
tion, and admission control.

4.1 Energy efficiency

In sensor nodes, the radio transceiver consumes a
significant proportion of system energy. Although
transmitting presents the highest energy consump-
tion, energy consumed in receiving and idle (awake
and prepared to receive) modes cannot be treated as
negligible. The latter may be particularly significant,
because nodes spend only a small proportion of their
time transmitting and receiving.

A centralized network, in which the central node
has knowledge of cell traffic and (often) access to elec-
trical mains, naturally supports mechanisms based on
spending energy and computational resources at this
node in order to save them in the more constrained
remote nodes. In particular, the central node can
schedule transmissions to minimize the amount of
time that each node must spend awake and waiting
for traffic, as well as acting as a source of (internal)
synchronization for the network.

In a decentralized network that relies on cooper-
ative forwarding of sensor data to a gateway, this
approach is less directly applicable. Because nodes
cannot predict when they will receive data for for-
warding, they must remain in the high energy con-
sumption idle mode. Moreover, there is no natural
source of synchronization for traffic announcements
or neighbor discovery messages, which can be used
to establish a virtual infrastructure, e.g. [3].

An asynchronous power save protocol is based on
the following observation: If each node remains awake
just over half (.5 + ε) of the time, its awake interval
will overlap with that of each of its neighbors. In
addition, the overlap is guaranteed to include either
the first ε or last ε of the awake interval – regardless



of their phase difference 1.
Any node with pending data uses these two inter-

vals to broadcast a traffic indication (ATIM) message,
as well as to transmit any other broadcast traffic. The
ATIM message indicates the neighbors for which the
transmitter has pending traffic, along with its current
estimate (if any) of that neighbor’s relative phase. By
the principle outlined above, every neighbor receives
one or the other of the ATIMs.

If the phase estimate in the ATIM is wrong, due
to either phase change or clock drift, or is missing,
the destination provides this information with an
ATIM-ACK message. From the phase information,
the sender can determine its available “transmission
window” (Figure 4) for each neighbor. Note that the
ATIM mechanism is only used to determine intervals
during which two neighbors are both awake to com-
municate. Access to the channel itself can be based
on any CSMA mechanism; current work is based on
the DCF defined in IEEE 802.11.

The energy saving obtained by this mechanism is
roughly (.5−ε), less the overhead. However, it is pos-
sible to overlay two (or more) instances of this mecha-
nism, using integral multiples of the base period. The
increased latency and number of retransmissions re-
quired to ensure phase discovery make this approach
most suitable for networks with low data frequency
compared to the network lifetime.

4.2 Flow adaptation

A multihop wireless sensor network is subject to a
number of forms of contention and interference which
significantly reduce its effective capacity[10]. The
mechanism described above only allows neighbors to
determine their transmission windows; it does not en-
sure that all pending data can be transferred during
a transmission window.

Clearly, the phase distribution among a group of
nodes significantly affects the available capacity of a
link or region. For example, Figure 4 shows a fe-
licitous distribution of phases. Because the transfer
windows of the three nodes do not overlap, they can-
not contend with each other. Moreover, because the

1Formally: Define a period I = 1 and and a value 0 < ε ≤
0.25. Let T and R independently schedule an awake interval
of duration (0.5 + ε) followed by a sleep interval of duration
(0.5 − ε), with a phase difference of 0 ≤ φ < 1. Either the
sub-interval [0..ε] or the sub-interval [0.5..0.5+ε], measured on
T , is completely contained in the awake interval of R.

The proof is trivial: Measured on T , the awake interval of T
is [0..0.5+ε] and the awake interval of R is [0+φ..0.5+ε+φ]. If
0 ≤ φ < 0.5, the awake interval of R cannot begin after t = 0.5
and cannot end before t = 0.5 + ε. If 0.5 ≤ φ < 1, the awake
interval of R cannot begin after t = 1 and cannot end before
t = 1 + ε.

window A−C
A−B

B−C

(.5 + ε) (.5 − ε)

ε ε

po
w

er

sleep

idle

A

B

C

time

transfer

Figure 4: Transfer windows. ATIM (dark) and
transfer interval (light) are shaded.

transmission window A-B is followed by the transmis-
sion window B-C, a flow A-B-C will experience low
latency.

One advantage of the phase discovery approach is
that a node can seamlessly change its phase with re-
spect to its neighbors. Phase adjustment can be used
to increase the effective capacity of a region and re-
duce latency along a path.

For example, a node can adjust its phase in order
to avoid attempting to send data when there are high
levels of contention or interference. Alternatively, the
sequence of nodes which forms a path can adjust their
phase in order to minimize intra-path interference
and minimize latency.

The MAC protocol is currently being evaluated in
simulation, using random phase adjustment. This
approach has the advantage of simplicity, as well as
reducing the likelihood of problematic feedback inter-
actions. Future work includes more complex schemes,
as well as incorporating some form of admission con-
trol.

5 Network and Application
Layer: TCP/IP for Sensor
Networks

In addition to application-specific distributed sensing
and data fusion algorithms and protocols, there is still
a requirement for supporting TCP/IP in the sensor
network environment. This requirement is driven by
practical issues such as network management, cali-
bration, diagnostics, and debugging. Moreover, run-
ning standard Internet protocols in a sensor network
makes it possible to connect the network directly to
the Internet.



Because a practical wireless sensor network can-
not be operated in isolation, it must somehow be
connected to an external network so that monitor-
ing and management entities can communicate with
it. There are significant practical advantages to being
able to connect a sensor network to external IP-based
infrastructures without the need for special proxies or
middle-boxes [6]. We are therefore working on adapt-
ing the standard TCP/IP protocol stack for the spe-
cific needs of wireless sensor networks.

We envision that the UDP and TCP protocols are
used for all data transport in sensor networks. Sen-
sor data is generally transmitted using UDP/IP in
conjunction with application specific data aggrega-
tion protocols. Certain administrative tasks require
reliable unicast connections, as well as the ability to
address a particular node. For this purpose, TCP/IP
is used.

One example of such an administrative function
is upgrading or reprogramming an individual sensor.
For example, it may be necessary to provide a new
task list to a node once it has completed its current
task. Because different nodes may finish their tasks
at different times, or only a subset of nodes are to be
upgraded, it may be necessary to address individual
sensors. Using TCP, a new task list and the associ-
ated code can be sent to a sensor from an external
IP network. This technique reduces the amount of
code that needs to be stored on the device, as well as
providing additional flexibility.

Another important example of administrative func-
tionality for which TCP/IP is useful are debugging
and diagnostic tasks requiring reliable connectivity
to a specific sensor. The importance of this kind of
supporting functionality quickly becomes clear when
deploying experimental applications and fully justi-
fies the effort spent on this case.

It is sometimes argued that TCP/IP is too heavy
weight for resource constrained sensor networks.
Among the issues which raise concern are the memory
overhead, the header overhead, the appropriateness
of the IP addressing scheme, as well as the overall
performance impact of the TCP end-to-end acknowl-
edgment and retransmission scheme. We address the
first two issues below and present the last two in more
detail in sections below.

We have developed uIP [5], a complete TCP/IP im-
plementation with a code size of only a few kilobytes
and requiring only few hundred bytes of RAM. Note
that a focus on a specific implementation does not
preclude portability: uIP runs not only on the ESB
sensor platform, but has been ported to a variety of
8-bit and 16-bit processors.

Issues of header overhead can be overcome by using

specific forms of header compression that utilize the
fact that the data transmitted in the sensor network
will be generated by a small set of applications.

5.1 Spatial IP addressing

In sensor networks, it is generally required that nodes
have a notion of their location, in order to give the
collected data meaning. In spatial IP addressing,
each sensor node uses its spatial location to construct
its IP address, as shown in Figure 5. It is important
to note that the spatial IP address not necessarily
denotes a single identifiable sensor node. Rather, the
address only represents the location of the node. If a
node is replaced, the new node will assign itself the
same IP address as the replaced node. Nodes that
move are simply assigned a new IP address based on
their current location.

Location information may be an absolute position
(i.e. from a GPS unit) or it may be a relative position
derived from some localization protocol. The address
may even be derived from a logical position, such as a
room number, as in the building security application
described below.

10.0.6.4

E

10.0.0.2

A

10.0.4.5

D

10.0.2.3

C

B

10.0.4.10

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
x

y

Figure 5: Spatial IP address assignment

If nodes are aware of their spatial location and use
this information to derive their address, then address
assignment requires neither a central server nor com-
munication among the sensor nodes. Furthermore,
spatial IP addressing enables regional subnetting, as
well as various forms of regional broadcast, as in Fig-
ure 6.

5.2 Distributed TCP Caching

The TCP end-to-end acknowledgment and retrans-
mission scheme results in expensive retransmissions
along every hop of the path between the sender and



10.0.6.4

E

10.0.0.2

A

10.0.4.5

D

10.0.2.3

C

B

10.0.4.10

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
x

y

10.0.4.0/255.255.254.254

10.0.0.0/255.255.252.252

Figure 6: Regional subnets

the receiver if a packet is lost. This leads to poor per-
formance in terms of both energy consumption and
throughput. To overcome these problems, we have
developed Distributed TCP Caching (DTC).

Distributed TCP caching avoids end-to-end re-
transmissions by caching TCP segments in the net-
work and performing local retransmissions.

Ideally, each node would cache all the segments and
the last node to have successfully received a segment
would perform a local retransmission. Because sensor
nodes are memory constrained, however, each node is
only permitted to cache one segment. Nodes there-
fore attempt to identify and cache segments that may
not have been received successfully by the next hop,
as indicated by a missing (active or passive) acknowl-
edgment.

In our simulations, we use active link layer ac-
knowledgments. A TCP segment that is forwarded
but for which no link layer acknowledgment is re-
ceived is assumed to have been lost in transit. There-
fore, the segment is locked in the cache, indicating
that it should not be overwritten by a TCP segment
with a higher sequence number. A locked segment
is removed from the cache when an acknowledgment
referring to the cached segment is received, or when
the segment times out.

To avoid end-to-end retransmissions, DTC needs
to respond to lost packets more quickly than reg-
ular TCP. DTC uses ordinary TCP mechanisms to
detect packet loss: timeouts, duplicate and selective
acknowledgments. Every node participating in DTC
therefore has to maintain a soft TCP state for each
end-to-end connection for which it forwards packets.

Simulation experiments show that this mechanism
substantially improves TCP performance in wireless
sensor networks: DTC significantly reduces the over-
all number of TCP segment transmissions and the
number of end-to-end retransmissions. Analytical

results also suggest that DTC performs well: The
number of transmitted segments is only about 10%
higher than would occur given an ideal caching strat-
egy for short paths (six hops) and about 25% higher
for longer ones (11 hops).

A high-level network simulation environment al-
lows developers to quickly and easily generate large
numbers of randomized scenarios. Having studied the
effectiveness of DTC in this environment, we are cur-
rently in the implementing it for the ESB nodes, using
the Contiki simulator.

6 Applications

This section describes three prototype networks be-
ing developed in cooperation with project partners in
their areas of specific interest and presents some pre-
liminary results. Although the communication pat-
terns within the networks themselves are fairly sim-
ple, a number of interesting issues arise in practical
deployments.

6.1 Building security

The purpose of this sensor network application is to
secure a sensitive installation. The work is carried out
in cooperation with SAAB Technologies. A demon-
stration was held in May, 2004.

In the demonstration scenario, a network of mo-
tion sensors is deployed in an office environment. If
there are movements in the building that are not sup-
posed to be there, they are detected by the sensor
network and an alarm is sent via GSM. A security
team responding to the alarm logs into the building
network to obtain information about the status inside
the building.

The demonstration network was deployed along a
90 meter long corridor, and about ten adjacent of-
fices. The network consisted of ESB nodes with two
separate roles: motion detector nodes and backbone
nodes. The motion detectors were placed in the of-
fices and the backbone nodes were placed along the
corridor. Each motion detector had a direct com-
munication path to at least one backbone node, and
the backbone nodes each had contact with one other
backbone node. One backbone node was equipped
with an external network interface. Overall, the
demonstration network was relatively small, consist-
ing of two to four backbone nodes and five to eight
sensors.

When a motion detection node detects movement,
it transmits an alarm message to the closest back-
bone node. The backbone node saves this message



and transmits the information to its neighbor back-
bone nodes. Eventually, all of the backbone nodes
have information about the entire state of the net-
work. The backbone node with network connectivity
transmits the alarm information over GSM.

The security team also has a mobile backbone node
(a PDA) that can contact the closest backbone node,
download the entire network state, and provide a
“tactical display”.

The network used a variant of spatial IP address-
ing where all nodes, both motion detection nodes and
backbone nodes, were given (x, y) coordinates and
configured themselves with an IP address in the form
172.16.x.y. This configuration information was pro-
vided to each sensor at deployment time over IR using
a backbone sensor as a form of remote control – a con-
venient solution to a practical problem in deploying
sensor network solutions. The mobile backbone node
had a fixed IP address from another network, indi-
cating that it somehow was different from the other
backbone nodes.

6.2 Marine monitoring

This work is intended to study the feasibility of using
a sensor network for monitoring water temperature
and salinity, significantly reducing the cost of this as-
pect of marine research. The application is currently
being developed in cooperation with Ume̊aMarine
Sciences Centre.

The network will be deployed in the northern part
of the Baltic Sea, where fresh water movements affect
temperature and salinity. The depth of the water is
about 20 meters at the location being used for the
study.

Figure 7: Marine sensor network

The structure of the network is shown in Figure 7.
Sensors are attached to a cable that descends from

a buoy, providing measurements of temperature and
salinity at known depths. Because underwater com-
munication using acoustic channels is still in its in-
fancy and underwater modems are expensive, these
sensors will be connected as a fixed network. The
sensors being developed for underwater sensing are
based on a simplified ESB node, waterproofed for use
in a marine environment.

Above the waterline, at the buoy atop each cable,
is a full function ESB node. These nodes collect sen-
sor data from the fixed network beneath them and
forward the data over their wireless interface to the
node designated as the gateway. A GPRS module is
attached to the gateway node via the RS-232 inter-
face of the ESB.

The collected data will be transferred to the marine
sciences center via GPRS. The GPRS interface also
supports data transport to the sensor nodes for re-
programming, monitoring and debugging. This func-
tionality is an example of the usefulness of being able
to manage nodes directly via TCP/IP protocols.

6.3 HVAC Monitoring

The purpose of this network is to explore the feasibil-
ity of instrumenting a residential complex to improve
the efficiency of its HVAC (heating, ventilating, and
air conditioning) system. The network is being de-
ployed by a small company, Raditex AB, which in-
tends to use the information from this study to im-
prove the energy efficiency of the heating system.

In order to know where the energy is consumed,
it is necessary to measure the temperature at many
different locations inside the buildings. This is done
using a scaled down ESB node, equipped with less
sensors than a full scale node: temperature and vi-
bration.

The energy control rooms for the complex are al-
ready connected over Ethernet, so an IP-based sen-
sor network fits well with the existing infrastructure.
This network also uses a variant of spatial IP ad-
dressing, where the IP address includes the build-
ing number, the floor, and the number of the closest
apartment.

7 Conclusion

In this paper, we have described the ongoing devel-
opment of sensor network solutions at the Computer
and Network Architecture Laboratory of the Swedish
Institute of Computer Science. Key elements of the
system are the ESB hardware platform, the Con-
tiki operating system and the communication stack,



which includes a specialized TCP/IP that is suitable
for resource constrained sensor networks.

The work has been driven by a variety of proto-
type applications, also described in the paper. The
result is an emphasis on development environment
and network management issues. Some emerging pat-
terns are: the importance of an effective development
environment for programming and debugging sensor
systems, the versatility of the ESB sensor hardware
and Contiki operating system as a prototype devel-
opment platform, and the importance of paying suffi-
cient attention to deployment, configuration and sys-
tem maintenance issues.

All of the system software and develop-
ment tools are freely available in source form
(http://www.sics.se/cna) and the system has
begun to attract a growing user community.

8 Acknowledgments

The authors would like to acknowledge the support of
Jochen Schiller and his colleagues at the Freie Univer-
sität Berlin and the partners in the DTN/SN project.

References

[1] Berkeley mica motes. Web page.
URL: http://www.xbow.com/ Visited 2004-06-22.

[2] Adam Dunkels and Björn Grönvall and
Thiemo Voigt. Contiki - a Lightweight and
Flexible Operating System for Tiny Networked
Sensors. In First IEEE Workshop on Embedded
Networked Sensors (2004).

[3] Chen, B., Jamieson, K., Balakrishnan, H.,
and Morris, R. Span: An energy-efficient co-
ordination algorithm for topology maintenance
in ad hoc wireless networks. ACM Wireless Net-
works Journal 8, 5 (Sept. 2002), 481–494.

[4] CST Group at FU Berlin. Scatterweb Em-
bedded Sensor Board. Web page.
URL: http://www.scatterweb.com/ Visited 2004-06-
22.

[5] Dunkels, A. Full TCP/IP for 8 Bit Architec-
tures. In Proceedings of the First International
Conference on Mobile Systems, Applications and
Services (MobiSys) (San Francisco, May 2003).

[6] Dunkels, A., Voigt, T., Alonso, J., Rit-
ter, H., and Schiller, J. Connecting Wire-
less Sensornets with TCP/IP Networks. In

Proceedings of the Second International Con-
ference on Wired/Wireless Internet Communi-
cations (WWIC2004) (Frankfurt (Oder), Ger-
many, Feb. 2004).

[7] Feeney, L. M. An asynchronous power save
protocol for wireless ad hoc networks. Tech. Rep.
T2002:09, SICS – Swedish Institute of Computer
Science, July 2002. revised version February,
2003.

[8] Feeney, L. M. A QoS aware power save proto-
col for wireless ad hoc networks. In Proceedings
of the First Mediterranean Workshop on Ad Hoc
Networks(Med-Hoc Net 2002) (Sardenga, Italy,
Sept. 2002).

[9] Hill, J., Szewczyk, R., Woo, A., Hollar,
S., Culler, D., and Pister, K. System ar-
chitecture directions for networked sensors. In
Proceedings of the 9th International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems (Nov. 2000).

[10] Li, J., Blake, C., Couto, D. S. J. D., Lee,
H. I., and Morris, R. Capacity of ad hoc
wireless networks. In Proc. of 7th Annual Inter-
national Conference on Mobile Computing and
Networking (2001), pp. 61–69.

[11] Tseng, Y.-C., Hsu, C.-S., and Hsieh, T.-
Y. Power-saving protocols for ieee 802.11-based
multi-hop ad hoc networks. Comput. Networks
43, 3 (2003), 317–337.


