
Poster Abstract: Making Sensor Networks IPv6 Ready

Mathilde Durvy∗, Julien Abeillé∗, Patrick Wetterwald∗,
Colin O’Flynn†, Blake Leverett⋆, Eric Gnoske⋆, Michael Vidales⋆, Geoff Mulligan•,

Nicolas Tsiftes‡, Niclas Finne‡, Adam Dunkels‡

{jabeille,mdurvy,pwetterw}@cisco.com, coflynn@newae.com,
{blake.leverett,eric.gnoske,michael.vidales}@atmel.com, geoff@mulligan.com, {nvt,nfi,adam}@sics.se

∗ Cisco Systems, † NewAE, ⋆ Atmel Corporation,
• Proto6 LLC, ‡ Swedish Institute of Computer Science

ABSTRACT
With emerging IPv6-based standards such as 6LowPAN and ISA-
100a, full IPv6 sensor networks are the next major step. With mil-
lions of deployed embedded IPv6 devices, interoperability is of
major importance, both within the sensor networks and between
the sensors and the Internet hosts. We present uIPv6, the first IPv6
stack for memory-constrained devices that passes all Phase-1 IPv6
Ready certification tests. This is an important step for end-to-end
interoperability between IPv6 sensors and any IPv6 capable device.
To allow widespread community adoption, we release uIPv6 under
a permissive open source license that allows both commercial and
non-commercial use.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Standardization, Design

Keywords
IPv6, Protocol stack, Sensor networks

1. INTRODUCTION
Most of current wireless sensor platforms use IEEE 802.15.4 as

a physical and medium access control layer. The upper layers of the
communication stack, however, remain either proprietary or speci-
fied by exclusive alliances such as Z-Wave or Zigbee. This plethora
of solutions renders interoperability between different sensor net-
works difficult. The diversity of protocols also makes the seamless
integration of sensor networks with existing IP networks impossi-
ble.

The adoption of IP as the Layer-3 protocol to connect wireless
sensors has been slow down by the common belief that IP is too
large to fit on a memory constrained device. This belief was shown
to be false by existing IPv4 implementations, the most well-known
being the uIP stack [5].

Yet, a realInternet of Things requires the large address space of
IPv6. This extended address space (2

128 instead of232) together
with its autoconfiguration capabilities makes IPv6 a suitable proto-
col for large scale sensor network deployments. Moreover, recent

Copyright is held by the author/owner(s).
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
ACM 978-1-59593-990-6/08/11.

Application 3

RFC 4944 − 6lowPAN

Application 1

TCP /UDP

802.15.4 802.11 Ethernet

RFC 2464 − Ethernet adaptation layer

IPv6 / ICMPv6 / ND

Application 2

Figure 1: The uIPv6 stack runs over any MAC and link layer,
such as 802.15.4/6LowPAN, 802.11, and Ethernet.

standardization work within the 6LowPan group [10] has reduced
the header overhead of IPv6, thereby reducing its power consump-
tion.

We present uIPv6, the smallest IPv6 Ready [13] stack available
so far. It has a code size of 11.5 Kbytes and requires less that 2
Kbytes of RAM. As a result, it can fit on the most constrained plat-
forms available today. Our uIPv6 stack is built on top of the Contiki
Operating System [6], which also includes the latest version of the
uIP stack. uIPv6 will be included in Contiki version 2.3.

2. INTEROPERABILITY IS ESSENTIAL
Adherence to standards is essential to ensure interoperability and

to allow large scale deployments. RFC4294 [9] summarizes re-
quirements for IPv6 hosts and routers. In particular, it states that an
IPv6 nodemust comply to the following standards: IPv6 Specifi-
cation [3], IPv6 Addressing Architecture [8], Neighbor Discovery
(ND) [11], Internet Control Message Protocol for IPv6 [1], State-
less Address Autoconfiguration [14], Default Address Selection [4]
and Multicast Listener Discovery [2, 15].

To ensure compliance with the IPv6 standards, the IPv6 Forum
[12] created the IPv6 Ready logo program [13]. The IPv6 Ready
program provides conformance and interoperability test specifica-
tions and delivers Phase-1 and Phase-2 logos that correspond to two
levels of certification. Since its start in 2003, the program has cer-
tified over 350 products, ranging from software stacks to hardware
devices such as network printers and telephones.

uIPv6 is the first stack for very constrained devices to satisfy
all the IPv6 Ready Phase-1 requirements, thereby making it the
smallest IPv6 Ready stack in existence today.

3. THE UIPV6 STACK
The uIPv6 stack is implemented in Contiki and uIPv6 integrates

into Contiki the same way the uIP IPv4 implementation does. uIPv6



is tightly coupled to the UDP and TCP protocol implementations,
and offers the same interface to application developers as uIP does.

uIPv6 does not depend on any particular MAC or link layer.
The interface between uIPv6 and the lower layers consists of two
wrappers for the link-layer input/output functions, the link-layer
address, and a couple of constants. This creates a level of abstrac-
tion which enables the easy integration of many different MAC and
link layer protocols (see Figure 1).

uIPv6 runs as a Contiki protothread [7]. At system startup, uIPv6
initializes its network interface. The node creates its link-local IPv6
address by combining thefe80 :: 0/64 prefix and its 802.15.4
MAC address. It then performs Duplicate Address Detection (DAD)
to make sure the address is not already used by another node. In
parallel, the node issues router solicitation messages to trigger ad-
vertisement from routers on the network. The node uses the in-
formation received to configure its global addresses and update its
network parameters. The uIPv6 stack uses separate timers to pace
the messages sent during the DAD and the router discovery pro-
cesses. In further operations, events generated by lower-layers trig-
ger the processing of incoming IPv6 packets by the stack. This
includes generating the appropriate response and updating the dif-
ferent neighbor discovery and interface data structures. When a
node needs to send a packet, it performs next-hop determination to
find the neighbor to which the packet should be sent. If the MAC
address of this neighbor is not contained in its cache, the node per-
forms address resolution to obtain it.

The uIPv6 stack uses a single global buffer for incoming and out-
going packets. The length of the buffer is the length of the MAC
header plus 1280 bytes (i.e., the minimum link MTU [3]). Ad-
ditional buffers are available to support fragment reassembly and
per neighbor packet buffering. The main data structures are the in-
terface address list and the neighbor cache, prefix list, and default
router list which are required by ND. The uIPv6 stack uses two
periodic timers to manage and remove outdated information from
these structures.

4. EVALUATION
As our implementation targets very constrained devices, it is es-

sential that the memory footprint be small. To evaluate our sys-
tem, we use the Atmel’s RAVEN board which is equipped with a
Atmega1284P MCU with 128 Kbytes of flash and 16 Kbytes of
SRAM. We compile our code with avr-gcc 4.2.2.

The code and memory footprint is given in Table 1. The total
IPv6 code size is approximately 11.5 Kbytes and the RAM usage
around 1.8 Kbytes. RAM usage has been carefully optimized. The
single packet buffer uses already 1296 bytes, the neighbor cache
140 bytes (35 per neighbor stored), the prefix list 69 bytes (23 per
prefix), the router list 14 bytes (7 per router) and the interface ad-
dress list and variables 109 bytes.

We found that on constrained devices, the limited amount of
buffer space makes it impossible to support the fragment reassem-
bly of very large packets (as mandated by RFC2460 [3]). It is also
unrealistic to expect that a node would be able to buffer one packet
per neighbor during the address resolution process (as mandated by
RFC4861 [11]).

Moreover, the fact that most ND messages, when they include
options, trigger data structure updates creates considerable com-
plexity in the packet processing, as shown by the size of the ND
Input/Output file. Other IP design principles, such as the need to
accept options and extension headers in any order while nodes usu-
ally send them in the recommended order also add complexity to
the implementation.

For a complete running system, preliminary results give a total

Table 1: Code and memory footprint for the uIPv6 stack, in
bytes

Function ROM RAM

ND Input/Output 4800 20
ND structures 2128 238
Network interface management 1348 118
Stateless address autoconf 372 16
IPv6 (header processing, etc) 1434 44
Packet buffer 0 1296
ICMPv6 1406 16

Total 11488 1748

code size of 35K. This includes RAVEN drivers, 802.15.4 PHY
and MAC, 6lowPAN with fragmentation and header compression,
uIPv6, and the Contiki OS. For a UDP (resp., TCP) transport layer
add 1.3KBytes (resp., 4KBytes).

5. CONCLUSION
In this work, we show that even severely memory-constrained

devices can fulfill the requirements for Phase-1 of the IPv6 Ready
program. This is a major step towards full-scale interoperability
between IP-based sensor networks and hosts on the wired Internet,
and paves the way for the next generation of integrated IP and sen-
sor networks.

6. REFERENCES
[1] A. Conta, S. Deering, and M. Gupta. Internet Control

Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification. RFC 4443, IETF, Mar. 2006.

[2] S. Deering, W. Fenner, and B. Haberman. Multicast Listener
Discovery (MLD) for IPv6. RFC 2710, IETF, Oct. 1999.

[3] S. Deering and R. Hinden. Internet Protocol, Version 6
(IPv6) Specification. RFC 2460, IETF, Dec. 1998.

[4] R. Draves. Default Address Selection for Internet Protocol
version 6 (IPv6). RFC 3484, IETF, Feb. 2003.

[5] A. Dunkels. Full TCP/IP for 8-bit architectures. In
Proceedings of MobiSys, May 2003.

[6] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny networked
sensors. InProceedings of EmNets I, Nov. 2004.

[7] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads:
Simplifying event-driven programming of
memory-constrained embedded systems. InProceedings of
SenSys 2006, Nov. 2006.

[8] R. Hinden and S. Deering. IP Version 6 Addressing
Architecture. RFC 4291, IETF, Feb. 2006.

[9] J. Loughney. IPv6 Node Requirements. RFC 4294, IETF,
Apr. 2006.

[10] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler.
Transmission of IPv6 Packets over IEEE 802.15.4 Networks.
RFC 4944, IETF, Sept. 2007.

[11] T. Narten, E. Nordmark, W. Simpson, and H. Soliman.
Neighbor Discovery for IP version 6 (IPv6). RFC 4861,
IETF, Sept. 2007.

[12] The IPv6 Forum. http://www.ipv6forum.com/.
[13] The IPv6 Ready Logo Program. http://www.ipv6ready.org.
[14] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless

Address Autoconfiguration. RFC 4862, IETF, Sept. 2007.
[15] R. Vida and L. Costa. Multicast Listener Discovery Version 2

(MLDv2) for IPv6. RFC 3810, IETF, June 2004.


