
The ContikiMAC Radio Duty Cycling Protocol

Adam Dunkels
adam@sics.se

SICS Technical Report T2011:13
ISSN 1100-3154

December 2011

Abstract
Low-power wireless devices must keep their radio
transceivers off as much as possible to reach a low power
consumption, but must wake up often enough to be able to
receive communication from their neighbors. This report
describes the ContikiMAC radio duty cycling mechanism,
the default radio duty cycling mechanism in Contiki 2.5,
which uses a power efficient wake-up mechanism with
a set of timing constraints to allow device to keep their
transceivers off. With ContikiMAC, nodes can participate
in network communication yet keep their radios turned
off for roughly 99% of the time. This report describes the
ContikiMAC mechanism, measures the energy consump-
tion of individual ContikiMAC operations, and evaluates
the efficiency of the fast sleep and phase-lock optimiza-
tions.

1 Introduction
Low-power wireless devices must maintain strict power
budgets to attain years of lifetime. Of all components
on a low-power wireless device, the wireless transceiver
often has the highest power consumption. The wireless
transceiver consumes as much power when passively lis-
tening for transmissions from other devices as it does
when actively transmitting, so the transceiver must be
completely turned off to save power. Since the device
is not able to receive any data when the transceiver is
turned off, a duty cycling mechanism must be used to
turn the transceiver on every now and then. Over the
years, numerous duty cycling mechanisms have been pro-

posed (see e.g. Dutta and Dunkels for a more thorough
review of duty cycling mechanisms [9]). This document
describes the ContikiMAC duty cycling mechanism, the
default duty cycling mechanism in Contiki 2.5

ContikiMAC is designed to be simple to understand
and implement. ContikiMAC uses only asynchronous
mechanisms, no signaling messages, and no additional
packet headers. ContikiMAC packets are ordinary link
layer messages. ContikiMAC has a significantly more
power-efficient wake-up mechanism that previous duty
cycling mechanisms. This is achieved by precise timing
through a set of timing constraints. In addition, Contiki-
MAC uses a fast sleep optimization, to allow receivers to
quickly detect false-positive wake-ups, and a transmission
phase-lock optimization, to allow run-time optimization
of the energy-efficiency of transmissions.

The mechanisms in ContikiMAC are inspired by ex-
isting duty cycling protocols. The idea of periodic
wake-ups has been used by many protocols, such as
B-MAC [21], X-MAC [1], and BoX-MAC [18]. The
phase-lock optimization has been previously suggested by
WiseMAC [11] and has since been used by other proto-
cols as well [14]. The use of multiple copies of the data
packet as a wake-up strobe has previously been used by
the TinyOS BoX-MAC protocol [18].

The rest of this report is structured as follows. Sec-
tion 2 presents the ContikiMAC mechanism and its under-
lying principles. Section 3 describes the implementation
of ContikiMAC in Contiki 2.5. Section 4 evaluates the
energy efficiency of ContikiMAC, both with micro bench-
marks and in a data collection network. Related work is
reviewed in Section 5 and Section 6 concludes the report.

1

DD D A

AD

D

A Acknowledgement packet

Data packet

Reception window

Send data packets until ack received

Sender

Receiver

Transmission detected

D

Figure 1: ContikiMAC: nodes sleep most of the time and
periodically wake up to check for radio activity. If a
packet transmission is detected, the receiver stays awake
to receive the next packet and sends a link layer acknowl-
edgment. To send a packet, the sender repeatedly sends
the same packet until a link layer acknowledgment is re-
ceived.

Send data packets during entire period

Data packet

Reception windowSender

Receiver

Transmission detected

D

D

D DD D

D

D

Figure 2: Broadcast transmissions are sent with repeated
data packets for the full wake-up interval.

2 ContikiMAC

ContikiMAC is a radio duty cycling protocol that uses pe-
riodical wake-ups to listen for packet transmissions from
neighbors. If a packet transmission is detected during a
wake-up, the receiver is kept on to be able to receive the
packet. When the packet is successfully received, the
receiver sends a link layer acknowledgment. To trans-
mit a packet, a sender repeatedly sends its packet until
it receives a link layer acknowledgment from the receiver.
Packets that are sent a broadcasts do not result in link-
layer acknowledgments. Instead, the sender repeatedly
sends the packet during the full wake-up interval to en-
sure that all neighbors have received it. The principle of
ContikiMAC is shown in Figure 1 and Figure 2.

CCA

t
d

Ack

Data packet Data packet

t
i

t
a

t
c

t
r

t
r

Sender

Receiver

CCA

Figure 3: The ContikiMAC transmission and CCA tim-
ing.

2.1 ContikiMAC Timing
ContikiMAC has a power-efficient wake-up mechanism
that relies on precise timing between transmissions. Con-
tikiMAC wake-ups use an inexpensive Clear Channel As-
sessment (CCA) mechanism that uses the Received Signal
Strentgh Indicator (RSSI) of the radio transceiver to give
an indication of radio activity on the channel. If the RSSI
is below a given threshold, the CCA returns positive, in-
dicating that the channel is clear. If the RSSI is above the
threshold, the CCA returns negative, indicating that the
channel is in use.

The ContikiMAC timing is shown in Figure 3. The tim-
ing requirements from the figure are:

ti: the interval between each packet transmission.

tr: the time required for a stable RSSI, needed for a stable
CCA indication.

tc: the interval between each CCA.

ta: the time between receiving a packet and sending the
acknowledgment packet.

td: the time required for successfully detecting an ac-
knowledgment from the receiver.

The timing must satisfy a number of constraints. First,
ti, the interval between each packet transmission, must be
smaller than tc, the interval between each CCA. This is
to ensure that either the first or the second CCA is able
to see the packet transmission. If tc would be smaller
than ti, two CCAs would not be able to reliably detect a
transmission.

The requirement on ti and tc also place a requirement
on the shortest packet size that ContikiMAC can support,

2

Sender

t
c

t
r

t
r

t
s

Receiver

CCA CCA

Data packet

Figure 4: A packet transmission must be long enough so
that it does not fall between to subsequent CCAs.

as shown in Figure 4. For ContikiMACs two CCAs to
be able to detect the packet, a packet transmission cannot
be so short that it falls between the CCAs. Specifically,
ts, the transmission time of the shortest packet, must be
larger than tr + tc + tr.

When a CCA has detected a packet transmission, Con-
tikiMAC keeps the radio on to be able to receive the full
packet. When a full packet has been received, a link-
layer acknowledgment is transmitted. The time it takes
for an acknowledgment packet to be transmitted, ta, and
the time it takes for an acknowledgment packet to be de-
tected, td, establishes the lower bound for the check inter-
val tc.

We can now construct the full ContikiMAC timing con-
straints as

ta + td < ti < tc < tc + 2tr < ts. (1)

With an IEEE 802.15.4 link layer and a specific ra-
dio transceiver, some of the variables in Equation 1 are
given as constants. First, ta, the time between a packet
reception and the acknowledgment transmission, is de-
fined by the IEEE 802.15.4 specification as 12 symbols.
In 802.15.4, one symbol is 4/250 milliseconds long, giv-
ing ta = 48/250 = 0.192 milliseconds. Second, an IEEE
802.15.4 receiver can reliably detect the reception of the
acknowledgment after the 4-byte long preamble and the
1-byte start of frame delimiter is transmitted, which takes
40/250 miliseconds. Thus, td = 40/250. Finally, tr is
given by the data sheet of the CC2420 radio transceiver as
0.192 milliseconds.

With the constants for substituted, Equation 1 becomes

0.352 < ti < tc < tc + 0.384 < ts. (2)

The remaining variables, ti, tc, and ts can now be chosen.
Equation 2 gives a lower bound on ts > 0.736 millisec-
onds, which sets a limit on the smallest packet size we
can handle. With a bitrate of 250 kilobits per second, this
means that packets must be at least 23 bytes long, includ-
ing preamble, start of frame delimiter, and length field,
which leaves 16 bytes of packet data.

To ensure that all packets are larger than the smallest
packet size, packets may be padded with additional fram-
ing to ensure a minimum packet size. Alternatively, if the
network layer is able to ensure that packets never go be-
low a given size, no framing is needed. For example, in
the case of an IPv6 network layer, packets with full IPv6
headers will always be longer than the smallest Contiki-
MAC packet size on a IEEE 802.15.4 link layer. With
6lowpan IPv6 header compression, packets may become
smaller, but ensuring a smallest packet size is simple: do
not compress the header of IPv6 packets that are smaller
than a given threshold.

The ContikiMAC implementation in Contiki 2.5 uses
the following configuration:

• ti = 0.4 milliseconds,

• tc = 0.5 milliseconds, and

• ts = 0.884 milliseconds.

2.2 Packet Detection and Fast Sleep
The ContikiMAC CCAs do not reliably detect packet
transmissions: they only detect that the radio signal
strength is above a certain threshold. The detection of a
radio signal may either mean that a neighbor is transmit-
ting a packet to the receiver, that a neighbor is transmitting
to another receiver, or that some other device is radiating
radio energy that is being detected by the CCA mecha-
nism. ContikiMAC must be able to discern between these
events and react properly.

If a neighbor is transmitting a packet to the receiver,
the receiver should stay awake to receive the full packet
and transmit a link layer acknowledgment. Other nodes,
which detect the packet, could quickly go to sleep again.
Potential receivers cannot go to sleep to quickly, however,
as they must be able to receive the full packet. The naive
way to determine how long to be awake when a CCA has
detected radio activity is to stay awake for tl + ti + tl,

3

Silence not detected: fast sleep

i

Radio noise Radio noiseSender

Receiver

Activity detected Start of packet not detected: fast sleep

t

Figure 5: The ContikiMAC fast sleep optimization: if a
silence period is not detected before tl, the receiver goes
back to sleep. If the silence period is longer than ti, the
receiver goes back to sleep. If no packet is received after
the silence period, even if radio activity is detected, the
receiver goes back to sleep.

where tl is the transmission time of the longest possible
packet. This ensures, if the CCA woke up during the start
of the packet, that the full packet will be received by the
receiver.

The fast sleep optimization lets potential receivers go
to sleep earlier if the CCA woke up due to spurious radio
noise. The fast sleep optimization leverages knowledge of
the specific pattern of ContikiMAC transmissions as fol-
lows. First, if the CCA detects radio activity, but the radio
activity has a duration that is longer than the maximum
packet length tl, the CCA has detected noise and can go
back to sleep. I.e., if the activity period is not followed by
a silence period. Second, if the radio activity is followed
by a silence period that is longer than the interval between
two successive transmissions, ti, the receiver can go back
to sleep. Third, if the activity period is followed by a si-
lence period of the correct length, followed by activity,
but no start of packet could be detected, the receiver can
go back to sleep. The process is illustrated in Figure 5.

2.3 Transmission Phase-Lock

If we assume that each receiver has a periodic and sta-
ble wake-up interval, the sender can use knowledge of the
wake-up phase of the receiver to optimize its transmis-
sion. A sender can learn of a receiver’s wake-up phase
by making note of the time at which it saw a link layer
acknowledgment from the receiver. Since the receiver
must have been awake to be able to receive the packet,

DD D A

AD

D

A Acknowledgement packet

Data packet

Reception window

Send data packets until ack received

Sender

Receiver

Transmission detected

D

D A

AD

D

A Acknowledgement packet

Data packet

Reception windowSender

Receiver

Transmission detected

Send first data packet when receiver is known to listen

D

Figure 6: Transmission phase-lock: after a successful
transmission, the sender has learned the wake-up phase of
the receiver and subsequently needs to send fewer trans-
missions.

the sender can assume that the reception of a link layer
acknowledgment means that the sender has successfully
transmitted a packet within the receiver’s wake-up win-
dow and thus that the sender has found the receiver’s
wake-up phase. After a sender has learned the phase of
a receiver, the sender can commence its successive trans-
missions to this receiver just before the receiver is ex-
pected to be awake. The process is illustrated in Figure 6.

3 Implementation

The ContikiMAC implementation in Contiki 2.5 uses the
Contiki real-time timers (rtimer) to schedule its periodic
wake-ups to ensure a stable behavior even if many under-
lying processes are running. The real-time timers preempt
any Contiki process at the exact time at which they are
scheduled. The ContikiMAC wake-up mechanism runs as
a protothread [6] that is scheduled by a periodic real-time
timer. This protothread performs the periodic wake-ups
and implements the fast sleep optimization.

Transmissions are driven by an ordinary Contiki pro-
cess. If a wake-up is scheduled to occur when the radio is
busy during a transmission, the wake-up timer schedules a

4

new wake-up after another wake-up interval without per-
forming the wake-up.

The phase-lock mechanism is implemented as a sep-
arate module from ContikiMAC, to allow it to be used
by other duty cycle mechanisms, such as the Contiki X-
MAC [1] implementation. The phase-lock mechanism
maintains a list of neighbors and their wake-up phases.
The ContikiMAC transmission logic records the time of
each packet transmission. When a link layer acknowledg-
ment is received, it notifies the phase-lock module with
the transmission time of the last packet. This time is used
as an approximation of the wake-up phase of the receiver.

Before commencing a transmission, the ContikiMAC
transmission logic calls the phase-lock module to check if
it has a recorded wake-up phase of the intended receiver.
If so, the phase-lock code queues the packet to be trans-
mitted and sets a callback timer (ctimer) at the time of
the expected wake-up of the receiver. ContikiMAC will
then resume the transmission when the callback occurs.
The transmission will then be significantly shorter than
a normal transmission, because it occurs just before the
neighbor is expected to be awake. Reducing the length of
the transmission thus reduces radio congestion.

If a neighbor whose phase is known has rebooted, or if
its clock has drifted far enough away from its previous
wake-up phase, transmissions to the neighbor will fail.
To protect from this, ContikiMAC maintains a count of
failed transmissions for each known neighbor. After a
fixed number of failed transmission (16 in Contiki 2.5),
the neighbor is evicted from the list of known neighbors.
Likewise, if no link layer acknowledgment is received
within a fixed time (30 seconds in Contiki 2.5), regardless
of the number of transmissions, the neighbor is evicted.

4 Evaluation
This report evaluates two aspects of ContikiMAC: the
energy consumption of the individual ContikiMAC op-
erations and the power efficiency of ContikiMAC in a
data collection sensor network. In addition to the results
presented here, we have used ContikiMAC in much re-
cent work. For more ContikiMAC performance results,
the reader is referred to Dunkels et al. [3]; Duquennoy,
Österlind, Dunkels [7]; Duquennoy et al. [8]; Kovatch,
Duquennoy, Dunkels [16]; Lundén and Dunkels [17]; and

 0

 5

 10

 15

 20

C
u

rr
e

n
t

(m
A

)

Off

On

 0 5 10 15 20 25 30 35 40

R
a

d
io

Time (ms)

Figure 7: A ContikiMAC wake-up with no signal de-
tected. The two CCAs are seen in the lower graph.

 0

 5

 10

 15

 20

C
u

rr
e

n
t

(m
A

)

Off

On

 0 5 10 15 20 25 30 35 40

R
a

d
io

Time (ms)

Figure 8: A ContikiMAC wake-up with radio activity de-
tected and where the fast sleep optimization quickly turns
the radio off.

Tsiftes and Dunkels [24].

4.1 Micro Benchmarks

We measure the energy consumption of the individual
ContikiMAC operations by measuring the current draw
of a Tmote Sky mote [22] running ContikiMAC. We mea-
sure the current draw with an oscilloscope by measuring
the voltage over an 100 Ω resistor connected in series with
the Tmote Sky power source. We also instrument Contiki-
MAC to register the state of the radio on one of the Tmote
Sky I/O pins, with a high current indicating that the radio
is on and a low current indicating that the radio is off, and
measure the state of the pin with the same oscilloscope.
All measurements use ContikiMAC with a wake-up fre-

5

 0

 5

 10

 15

 20

C
u

rr
e

n
t

(m
A

)

Off

On

 0 5 10 15 20 25 30 35 40

R
a

d
io

Time (ms)

Figure 9: Broadcast reception: wake-up, packet detected,
broadcast packet received.

 0

 5

 10

 15

 20

C
u

rr
e

n
t

(m
A

)

Off

On

 0 5 10 15 20 25 30 35 40

R
a

d
io

Time (ms)

Figure 10: Unicast reception: wake-up, packet detected,
unicast packet received

quency of 8 Hz, which results in a wake-up interval of
125 ms.

Figure 7 shows the current draw of a ContikiMAC
wake-up that did not result in any packet reception. In
the lower graph, we see that the radio is turned on twice,
to perform the two CCAs of the ContikiMAC wake-up.
Figure 8 shows a ContikiMAC wake-up where the second
CCA detected spurious radio activity. The radio is then
kept on for a while longer, until the fast sleep optimiza-
tion turns off the radio.

Figure 9 and Figure 10 shows a broadcast reception and
a unicast reception, respectively. In both cases, the radio
was turned on as part of the ContikiMAC wake-up mech-
anism and the first CCA detected radio activity. The radio
was then kept on until the packet was received. We see
that the radio is turned on longer in the unicast reception

 0

 5

 10

 15

 20

C
u

rr
e

n
t

(m
A

)

Off

On

 0 20 40 60 80 100 120 140 160

R
a

d
io

Time (ms)

Figure 11: Broadcast transmission.

 0

 5

 10

 15

 20

C
u

rr
e

n
t

(m
A

)

Off

On

 0 20 40 60 80 100 120 140 160

R
a

d
io

Time (ms)

Figure 12: Non-synchronized unicast transmission (with
subsequent wake-up at 110 ms

case. This is because of the acknowledgment transmission
that is done as part of the unicast packet reception.

The current draw of transmissions are shown in Fig-
ure 11 through Figure 13. Figure 11 shows the current
draw of a broadcast transmission. A broadcast transmis-
sion must wake up and deliver its packet to all neigh-
bors. It therefore runs for a full wake-up interval. Since
a broadcast transmission does not expect any link layer
acknowledgment, the transmitter can turn off its radio be-
tween each packet transmission to save power, which can
be seen in the figure. Figure 12 show the current draw
of a unicast transmission to a previously unknown neigh-
bor. In this case, the neighbor’s wake-up occurred after
roughly 60 ms, which caused the transmitter to repeat-
edly send its packet some 70 ms. At the start of the trans-
mission, the initial clear channel assessment can also be
seen. Subsequent transmissions to the same receiver can

6

 0

 5

 10

 15

 20

C
u

rr
e

n
t

(m
A

)

Off

On

 0 20 40 60 80 100 120 140 160

R
a

d
io

Time (ms)

Figure 13: Synchronized unicast transmission (with sub-
sequent wake-up at 110 ms)

 0

 500

 1000

 1500

 2000

E
n
er

g
yv

 (
u
J)

Wake-up

Fast
sleep

Broadcast
reception

Unicast
reception

Broadcast
transmission

First
unicast

Subsequent
unicast

Figure 14: The energy consumption of the individual
ContikiMAC operations.

now be optimized to start at the expected wake-up time
of the neighbor, as seen in Figure 13, which shows how
the number of transmissions are reduced because of the
phase-lock optimization.

By computing the areas under the graphs in Figure 7
through Figure 13, we can compute the energy consump-
tion of each operation. The result is shown in Figure 14.
We see that the cost of a broadcast transmission is many
orders of magnitude higher than the cost of the wake-up.
This is good: the wake-up is the most common operation
in ContikiMAC—executed many times per second—and
therefore should be significantly less expensive than the
other operations.

Armed with the information in Figure 14, we can now

Table 1: Comparison of the energy consumption of the
wake-up operation.

Protocol Energy (uJ)
X-MAC [1] 132
Hui and Culler [14] 54
ContikiMAC 12

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

R
ad

io
 d

ut
y

cy
cl

e
(%

)

Channel check rate (Hz)

X-MAC

ContikiMAC

Figure 15: The radio duty cycle in a data collection net-
work with path loss, with X-MAC and ContikiMAC, as
a function of the wake-up frequency (in the graph called
channel check rate).

compare the cost of the ContikiMAC wake-up operation
with the wake-up operation of other duty cycling mech-
anisms. Table 1 shows the cost of a wake-up in Contiki-
MAC, in the Contiki X-MAC implementation [1], and the
duty cycling mechanism by Hui and Culler [14].

4.2 Network Power Consumption
To evaluate the network power consumption of Contiki-
MAC and the efficiency of its optimizations, we run
a set of simulations in the Contiki simulation environ-
ment. The Contiki simulation environment consists of the
Cooja network simulator and the MSPsim device emula-
tor. MSPsim provides a cycle-accurate Tmote Sky emu-
lation, with a symbol-accurate emulation of the CC2420

7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

R
ad

io
 d

ut
y

cy
cl

e
(%

)

Channel check rate (Hz)

No phase lock, no fast sleep
No phase lock, with fast sleep
With phase lock, no fast sleep

With phase lock, with fast sleep

Figure 16: The network radio duty cycle with Contiki-
MAC, averaged for all nodes a the network without path
loss.

radio transceiver. It enables the study of the behavior of
ContikiMAC in a timing-accurate and controlled environ-
ment.

We run a set of simulations with a 20-node simulation
topology. All nodes run Contiki and the Contiki Collect
protocol. The Contiki Collect protocol, which is part of
the Contiki Rime stack [4], is an address-free data col-
lection protocol that builds a tree rooted in one or more
sinks, towards which packets are routed. The performance
of Contiki Collect has been experimentally shown [15] to
be similar to other data collection protocols, such as the
TinyOS Collection Tree Protocol [12]. The nodes send a
data packet towards the sink once every 120 seconds. Ev-
ery transmission is sent with 31 hop-by-hop retransmis-
sions. Each node sends 100 packets towards the sink. The
simulation is run until all data packets have been received
by the sink. In all simulations, Contiki Collect was able
to successfully deliver all packets to the sink.

The purpose of the simulations is both to measure
the typical radio duty cycle that can be achieved with
ContikiMAC and to measure the effect of the fast sleep
and phase-lock optimizations. We vary the wake-up fre-
quency and the simulated loss levels. We run one set of
simulations with no path loss: packets are not lost due to
radio fading, but only due to collisions with other pack-

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

R
ad

io
 d

ut
y

cy
cl

e
(%

)

Channel check rate (Hz)

No phase lock, no fast sleep
No phase lock, with fast sleep
With phase lock, no fast sleep

With phase lock, with fast sleep

Figure 17: The network radio duty cycle with Contiki-
MAC, averaged for all nodes in a network with path loss.

ets. The second set of simulations use a path loss model
where the probability of a packet loss is proportional to
the square of the distance between the sender and the re-
ceiver.

We measure the radio duty cycle with Contiki’s Pow-
ertrace tool [2]. We use the radio duty cycle as a proxy
for the power consumption of the network, as the radio
transceiver has a linear power draw that depends on its
on-time [5, 22].

We first compare the performance of ContikiMAC with
that of X-MAC [1] in a network with path loss. We ex-
pect the power consumption of X-MAC to be significantly
higher than that of ContikiMAC due to the more costly
wake-up mechanism in X-MAC. Figure 15 shows the re-
sult: the power consumption of ContikiMAC is signif-
icantly lower for all wake-up frequencies in the experi-
ment.

Next, we measure the efficiency of the individual Con-
tikiMAC optimizations. We run the simulations with the
ContikiMAC optimizations switched on and off. The re-
sults are shown in Figure 16 and Figure 17. Figure 16
shows the radio duty cycle when there is no path loss.
We see that the radio duty cycle increases with the wake-
up frequency: with more wake-ups, the total power con-
sumption of the network increases. We also see that the
fast sleep and phase-lock optimizations significantly re-

8

duce power consumption.
Figure 17 shows the results in the network with path

loss. We see that the phase-lock and fast sleep optimiza-
tions are more efficient in the face of loss. This is because
of a phase-locked transmission being shorter than non-
phase-locked transmissions, leading both to less energy
being spent on transmissions and to less radio congestion.

5 Related Work
The high power consumption of the radio transceiver
is a well-known issue that has spurred much work on
radio duty cycling. Radio duty cycling mechanisms
can be divided into two main categories: synchronous
and asynchronous. Synchronous mechanisms depend on
neighboring nodes being synchronized with each other
whereas asynchronous mechanisms do not depend on any
a priori synchronization. Asynchronous mechanisms can
further be subdivided into sender-initiated and receiver-
initiated mechanisms. In sender-initiated mechanisms,
the sender initiates communication between a sender
and a receiver, whereas in receiver-initiated mechanisms,
the receiver initiates communication. ContikiMAC is a
sender-initiated asynchronous mechanism. The literature
provides many examples of mechanisms from these cat-
egories as well as hybrid mechanisms that combine fea-
tures from more than one of the categories.

Examples of synchronous protocols as the early work
on S-MAC [26] and T-MAC [25] as well as the more re-
cent TSMP [20]. In S-MAC and T-MAC, nodes period-
ically wake up in a scheduled manner such that commu-
nication can take place when adjacent nodes are awake.
The wake-up schedules are arranged to avoid overlapping
and medium contention. In TSMP, time is divided into 10
ms long slots. Nodes are given a schedule of when to be
awake. Nodes wake up briefly at the start of each slot to
listen for any activity on the radio medium. If activity is
detected, the radio is kept on longer to be able to receive
incoming packets.

Asynchronous protocols have the advantage of not re-
quiring synchronization and the research community has
explored many different variants of asynchronous proto-
cols. Early work on sensor network architectures found
a simple asynchronous mechanism called low-power lis-
tening [13] in which nodes periodically wake up to sam-

ple the medium for a wake-up tone. If a wake-up tone is
found, the radio is kept on to receive a transmission. To
send a packet, the sender first transmits a wake-up tone to
wake its neighborhood up. Later variants of this scheme
used scheduled transmissions to avoid sending a too long
wake-up tone [11]. The low-power listening scheme was
moved to a packetizing radio with X-MAC [1]. In X-
MAC, the wake-up tone is composed of a series of strobe
packets. When the receiver wakes up, it sends a link-layer
acknowledgment to the sender to indicate that it is awake
and ready to receive the data packet. Others have sub-
sequently improved upon these protocols [21, 14]. Con-
tikiMAC is highly similar to existing low-power listening
protocols but has a significantly more effective wake-up
mechanism due to the precise timing between each data
packet transmission.

Receiver-initiated protocols have a shorter history than
sender-initiated protocols. Low-Power Probing (LPP) is
perhaps the first example of a receiver-initiated protocol
for low-power wireless [19]. In LPP, when a node in-
tends to send a packet, it turns on its radio to listen for
probes from potential receivers. When the sender hears
a probe from the intended receiver of the packet, it trans-
mits its packet. RI-MAC [23] is a similar but more ef-
fective mechanism of the same type. A-MAC [10] makes
the wake-up signal more efficient, making both idle power
consumption lower and transmissions more effective

6 Conclusions
This report presents the ContikiMAC radio duty cycling
mechanism for low-power wireless networks, the default
radio duty cycling mechanism in Contiki 2.5. Contiki-
MAC is designed to be simple to understand and imple-
ment, uses only asynchronous and implicit synchroniza-
tion, and requires no signaling messages or additional
headers. ContikiMAC uses a simple but elaborate tim-
ing scheme to allow its wake-up mechanism to be highly
power efficient, a phase-lock mechanism to make trans-
missions efficient, and a fast sleep optimization to allow
receivers to quickly go to sleep when faced with spu-
rious radio interference. Measurements show that the
wake-up mechanism is significantly lower than for ex-
isting duty cycling mechanisms and that the phase-lock
and fast sleep mechanisms reduce the network power con-

9

sumption between 10% and 80%, depending on the wake-
up frequency of the devices in the network.

Acknowledgments
The author wishes to thank (in alphabetical order) Mari-
ano Alvira, Simon Duquennoy, Joakim Eriksson, Niclas
Finne, Marcus Lundén, David Kopf, Fredrik Österlind,
and Nicolas Tsiftes, for inspiration, help, and expertise.
This work was funded by the SSF as part of the Promos
project and the EU Commission as part of the NOBEL
and Calipso projects.

References
[1] M. Buettner, G. V. Yee, E. Anderson, and R. Han.

X-MAC: a short preamble MAC protocol for duty-
cycled wireless sensor networks. In Proceedings
of the International Conference on Embedded Net-
worked Sensor Systems (ACM SenSys), Boulder,
Colorado, USA, 2006.

[2] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes.
Powertrace: Network-level power profiling for
low-power wireless networks. Technical Report
T2011:05, Swedish Institute of Computer Science,
March 2011.

[3] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind,
J. Eriksson, and N. Finne. The announcement layer:
Beacon coordination for the sensornet stack. In Pro-
ceedings of the European Conference on Wireless
Sensor Networks (EWSN), 2011.

[4] A. Dunkels, F. Österlind, and Z. He. An adaptive
communication architecture for wireless sensor net-
works. In Proceedings of the International Con-
ference on Embedded Networked Sensor Systems
(ACM SenSys), Sydney, Australia, November 2007.

[5] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He.
Software-based on-line energy estimation for sensor
nodes. In Proceedings of the IEEE Workshop on Em-
bedded Networked Sensor Systems (IEEE Emnets),
Cork, Ireland, June 2007.

[6] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Pro-
tothreads: Simplifying event-driven programming
of memory-constrained embedded systems. In Pro-
ceedings of the International Conference on Em-
bedded Networked Sensor Systems (ACM SenSys),
Boulder, Colorado, USA, November 2006.

[7] S. Duquennoy, F. Österlind, and A. Dunkels. Lossy
Links, Low Power, High Throughput. In Proceed-
ings of the International Conference on Embedded
Networked Sensor Systems (ACM SenSys), Seattle,
WA, USA, November 2011.

[8] S. Duquennoy, N. Wirström, N. Tsiftes, and
A. Dunkels. Leveraging IP for Sensor Network
Deployment. In Proceedings of the workshop on
Extending the Internet to Low power and Lossy
Networks (IP+SN 2011), Chicago, IL, USA, April
2011.

[9] P. Dutta and A. Dunkels. Operating systems and
network protocols for wireless sensor networks.
Philosophical Transactions of the Royal Society A,
370(1958):68–84, January 2012.

[10] Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen,
Chieh-Jan Mike Liang, and Andreas Terzis. Design
and Evaluation of a Versatile and Efficient Receiver-
Initiated Link Layer for Low-Power Wireless. In
Proceedings of the International Conference on Em-
bedded Networked Sensor Systems (ACM SenSys),
Zurich, Switzerland, November 2010.

[11] A. El-Hoiydi, J.-D. Decotignie, C. C. Enz, and E. Le
Roux. wiseMAC, an ultra low power MAC proto-
col for the wiseNET wireless sensor network. In
Proceedings of the International Conference on Em-
bedded Networked Sensor Systems (ACM SenSys),
2003.

[12] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. In Proceed-
ings of the International Conference on Embedded
Networked Sensor Systems (ACM SenSys), Berkeley,
CA, USA, 2009.

[13] J. Hill and D. Culler. Mica: A wireless platform for
deeply embedded networks. IEEE Micro, 22(6):12–
24, 2002.

10

[14] J. Hui and D. Culler. IP is Dead, Long Live IP for
Wireless Sensor Networks. In Proceedings of the
International Conference on Embedded Networked
Sensor Systems (ACM SenSys), Raleigh, North Car-
olina, USA, November 2008.

[15] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty,
M. Durvy, J. Vasseur, A. Terzis, A. Dunkels, and
D. Culler. Beyond Interoperability: Pushing the Per-
formance of Sensornet IP Stacks. In Proceedings
of the International Conference on Embedded Net-
worked Sensor Systems (ACM SenSys), Seattle, WA,
USA, November 2011.

[16] M. Kovatsch, S. Duquennoy, and A. Dunkels. A
Low-Power CoAP for Contiki. In Proceedings of
the Workshop on Internet of Things Technology and
Architectures (IEEE IoTech 2011), Valencia, Spain,
October 2011.

[17] M. Lundén and A. Dunkels. The Politecast
Communication Primitive for Low-power Wireless.
ACM SIGCOMM Computer Communication Re-
view, 41:31–37, April 2011.

[18] D. Moss and P. Levis. BoX-MACs: Exploiting
Physical and Link Layer Boundaries in Low-Power
Networking. Technical Report SING-08-00, Stan-
ford University, 2008.

[19] R. Musaloiu-E., C-J. M. Liang, and A. Terzis.
Koala: Ultra-Low Power Data Retrieval in Wire-
less Sensor Networks. In Proceedings of the Inter-
national Conference on Information Processing in
Sensor Networks (ACM/IEEE IPSN), St. Louis, Mis-
souri, USA, 2008.

[20] K. Pister and L. Doherty. TSMP: Time Synchro-
nized Mesh Protocol. In Proceedings of the IASTED
International Symposium on Distributed Sensor Net-
works (DSN08), Orlando, Florida, USA, November
2008.

[21] J. Polastre, J. Hill, and D. Culler. Versatile low
power media access for wireless sensor networks. In
Proceedings of the International Conference on Em-
bedded Networked Sensor Systems (ACM SenSys),
Baltimore, MD, USA, 2004.

[22] J. Polastre, R. Szewczyk, and D. Culler. Telos: En-
abling ultra-low power wireless research. In Pro-
ceedings of the International Conference on Infor-
mation Processing in Sensor Networks (ACM/IEEE
IPSN), Los Angeles, CA, USA, April 2005.

[23] Y. Sun, O. Gurewitz, and D. Johnson. RI-MAC: A
Receiver-Initiated Asynchronous Duty Cycle MAC
Protocol for Dynamic Traffic Loads in Wireless Sen-
sor Networks. In Proceedings of the International
Conference on Embedded Networked Sensor Sys-
tems (ACM SenSys), Raleigh, NC, USA, 2008.

[24] N. Tsiftes and A. Dunkels. A database in every sen-
sor. In Proceedings of the International Conference
on Embedded Networked Sensor Systems (ACM Sen-
Sys), Seattle, WA, USA, November 2011.

[25] T. van Dam and K. Langendoen. An adaptive
energy-efficient MAC protocol for wireless sen-
sor networks. In Proceedings of the International
Conference on Embedded Networked Sensor Sys-
tems (ACM SenSys), Los Angeles, California, USA,
November 2003.

[26] W. Ye, J. Heidemann, and D. Estrin. An Energy-
Efficient MAC Protocol for Wireless Sensor Net-
works. In Proceedings of the IEEE Conference
on Computer Communications (INFOCOM), New
York, NY, USA, June 2002.

11

